Certain subclass of harmonic univalent functions associated with generalized hypergeometric functions
نویسندگان
چکیده
منابع مشابه
A Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملStability for certain subclasses of harmonic univalent functions
In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.
متن کاملSubclasses of Bi-Univalent Functions Associated with Generalized Hypergeometric Function
In this paper, we have introduced and investigated two new subclasses of the function class Δ of bi-univalent functions defined in the open unit disk, which are associated with the generalized Hypergeometric function. Furthermore, we find estimates on the Taylor-Maclaurin coefficient | a2 | and | a3 | for the functions belonging to these new classes.
متن کاملOn a Subclass of Harmonic Univalent Functions
The class of univalent harmonic functions on the unit disc satisfying the condition ∑∞ k=2 (k m − αk)(|ak|+ |bk|) ≤ (1−α)(1−|b1|) is given. Sharp coefficient relations and distortion theorems are given for these functions. In this paper we find that many results of Özturk and Yalcin [5] are incorrect. Some of the results of this paper correct the theorems and examples of [5]. Further, sharp coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1770/1/012091